Context Free Grammar for {a^mb^nc^n | m , n ε N } | CFG for {a^mb^nc^n | m , n ε N }

 Context Free Grammar for {a^mb^nc^n   |  m , n    ε   N } | CFG for {a^mb^nc^n   |  m , n    ε   N } 

OR
To construct a context-free grammar (CFG) for the language L={ambncnm,nN}L = {a^m b^n c^n mid m, n in mathbb{N}}, let’s break down the problem.

Language Description

The language LL consists of strings where:

  • There are mm occurrences of the letter aa,
  • Followed by nn occurrences of the letter bb,
  • Followed by nn occurrences of the letter cc,
  • The number of bb‘s and cc‘s is the same, but there can be any non-negative number of aa‘s.

Constructing the CFG

We need a CFG that generates strings in the form of ambncna^m b^n c^n where mm and nn are non-negative integers. Here’s a CFG that generates this language:

Start Symbol: SS

Production Rules:

  • SaSBS rightarrow aS mid B
  • BbBcϵB rightarrow bBc mid epsilon
Explanation of the Rules:

:

  • This rule allows for the generation of any number of aa‘s at the beginning of the string. After generating aa‘s, it transitions to the non-terminal BB to handle the bb‘s and cc‘s.

:

  • This rule generates the sequence of bb‘s followed by cc‘s. For every bb introduced, a corresponding cc is introduced, maintaining the balance between the number of bb‘s and cc‘s. The rule BϵB rightarrow epsilon allows for the case when there are no bb‘s or cc‘s.

Example Derivations:

  • For m=2m = 2 and n=3n = 3, the string a2b3c3a^2 b^3 c^3 would be generated as follows:

    • SaSaaSaaBS Rightarrow aS Rightarrow aaS Rightarrow aaB
    • BbBcbbBcbbbBcbbbϵcccB Rightarrow bBc Rightarrow bbBc Rightarrow bbbBc Rightarrow bbbepsilon ccc
    • Therefore, aaBaabbbcccaaB Rightarrow aabbbccc
  • For m=0m = 0 and n=2, the string b2c2b^2 c^2 would be generated as follows:

    • SBS Rightarrow B
    • BbBcbbBcbbbc B Rightarrow bBc Rightarrow bbBc Rightarrow bbbc
    • BϵB Rightarrow epsilon giving bbc bbc
This CFG correctly generates all strings in the language {ambncnm,nN}{a^m b^n c^n mid m, n in mathbb{N}}.

Leave a Comment