Context Free Grammar for {a^mb^na^m | m , n ε N } | CFG for {a^mb^na^m | m , n ε N }

 Context Free Grammar for {a^mb^na^m  |  m , n ε   N } | CFG for {a^mb^na^m  |  m , n ε   N }

OR

To construct a context-free grammar (CFG) for the language L={ambnamm,nN}L = {a^m b^n a^m mid m, n in mathbb{N}}, we need to ensure that:

  • The number of aa‘s at the beginning and end of the string are the same,
  • There are nn bb‘s in the middle.
CFG Construction
Start Symbol: SS
Production Rules:
  • S→aSa∣B
  • B→bB∣ϵ
Explanation of the Rules:

:

  • The rule SaSaS rightarrow aSa allows us to add matching pairs of aa‘s at the beginning and end of the string, recursively building the structure while ensuring the same number of aa‘s at both ends.
  • The rule SBS rightarrow B transitions to the non-terminal BB once all aa‘s have been placed, so that we can handle the bb‘s in the middle part of the string.

:

  • This rule generates any number of bb‘s in the middle. The production BbBB rightarrow bB adds a bb to the middle part and recursively continues. The rule BϵB rightarrow epsilon allows for the middle part to have zero or more bb‘s.
Example Derivations:

For m=2m = 2 and n=3n = 3, the string a2b3a2a^2 b^3 a^2 would be generated as follows:

  • SaSaaaSaaS Rightarrow aSa Rightarrow aaSaa
  • Next, we need to derive SS to BB:
    • SBS Rightarrow B
    • BbBbbBbbbBbbbϵB Rightarrow bB Rightarrow bbB Rightarrow bbbB Rightarrow bbbepsilon
  • Combining these, we get: aabbbaaaa , bbb , aa
  • For m=1m = 1 and n=2n = 2, the string a1b2a1a^1 b^2 a^1 would be generated as follows:

    • SaSaS Rightarrow aSa
    • To replace SS with BB:
      • SBS Rightarrow B
      • BbBbbBbbϵB Rightarrow bB Rightarrow bbB Rightarrow bbepsilon
    • Combining these, we get: abbaa , bb , a

This CFG effectively generates all strings in the language {ambnamm,nN}{a^m b^n a^m mid m, n in mathbb{N}}.

Leave a Comment