Advanced Theory of Computation

This course includes various topics, and you can find their complete details on our website.

LANGUAGES

  • All String Languages
  • Even Languages
  • Odd Languages
  • Prime Languages
  • Language (Formal and Informal )
  • Languages for Length Exactly Two
  • Languages for Length at Least two
  • Languages for Length at most Two
  • Lexicographic order

Context Free Grammar (CFG)

  • CFG) for  ab*
  • (CFG) for (ab)*
  • (CFG) for a*b*
  • (CFG) for b*a*
  • (CFG) for (a + b)*
  • (CFG) for a( a + b )*
  • (CFG) for ( a + b )*ab
  • (CFG) for (a+b)*aa(a+b)*
  • (CFG) for a*+b*
  • (CFG) for (a + ab)* + bb*
  • (CFG) for ab*  + b*
  • (CFG) for {a^nb^n   |   n    ε   N }
  • (CFG) for {a^nb^n   |   n    ε   W }
  • (CFG) for {a^nb^nc^n   |  n    ε   N }
  • (CFG) for {a^mb^n   |  m >n    ε   N }
  • (CFG) for a^2nb^n
  • (CFG) for {a^mb^n   |  m >n  & m ,n =0,1,2,….}
  • (CFG) for {a^mb^n   |  m < n  & m ,n =0,1,2,….}
  • (CFG) for a^mb^n
  • (CFG) for {a^mb^n   |  m ≠ n  & m ,n =0,1,2,….}
  • (CFG) for {a^mb^nc^m+n  | m ,n =0,1,2,….}
  • (CFG) for {a^mb^mc^n   |  m , n    ε   N }
  • (CFG) for {a^mb^nc^n   |  m , n    ε   N }
  • (CFG) for {a^mb^na^m   |  m , n    ε   N }
  • (CFG) for Equal Number of a’s   and  b’s
  • (CFG) for Un-Equal Number of a’s   and  b’s
  • (CFG) for Palindrome
  • (CFG) for Non-Palindrome
  • (CFG) for Language of All Palindrome(Even Length)
  • (CFG) for Language of All Palindrome(Odd Length)
  • (CFG) for Even String ((a+b)(a+b))*

Regular Expression(RE)

  • Regular Expression for Language of  all  those  strings  which  end  with  ‘aa’  or ‘ab’  and have  odd length?
  • Regular Expression for Language of  all  those  strings  which   do not contain substring ‘bb’ ?
  • Regular Expression for Language of  all  those  strings  whose length is  odd  and contain exectly one b ?

Finite State Automata(FSA)

  • FSA for End with “aa” or “ab” and have Odd length
  • FSA for Don’t contain Substring “bb”
  • FSA for Length is Odd and End with “b”
  • FSA for String which have End with “b”

Push Down Automata(PDA)

  • PDA for { a^mb^n    /   m  >  n  ∈  N  }
  • PDA for { a^mb^n    /   m  <  n  ∈  N  }
  • PDA for { a^mb^m+n c^n  /   m,n  ∈  N  }
  • PDA for { a^mb^n c^m+n  /   m,n  ∈  N  }
  • PDA for Even  Palindrome
  • PDA for Odd  Palindrome
  • PDA for Palindrome
  • PDA for UnEqual Number of a and b

Turing Machine (TM)

  • Turing Machine for a^nb^n
  • Turing Machine for a^nb^nc^n
  • Turing Machine for a^mb^mc^nd^n
  • Turing Machine for a^mb^nc^md^n
  • Turing Machine for a^mb^n+mc^n
  • Turing Machine for a^mb^nc^m+n
  • Turing Machine for the language { b^na^kn  | n= 0 , 1 , 2 …………} for k = 5

Palindrome  & Non-Palindrome

  • Turing Machine for Palindrome
  • Turing Machine for Non-Palindrome

Equal & Un-Equal Number’s

  • Turing Machine for Equal number of a’s and b’s
  • Turing Machine for Un-Equal number of a’s and b’s

Replace

  • Turing Machine(TM) for Odd length and Replace middle symbol with ‘x’
  • Turing Machine(TM) for Replace Every Third symbol with ‘b’

Reverse String

  • Turing Machine for Reverse String ( First Method )
  • Turing Machine for Reverse String ( Second Method )

Copy of String

  • Turing Machine(TM) for Copy of String

Insert Position

  • Turing Machine (TM) for Insert ‘b’ at First Position
  • Turing Machine(TM) for Insert ‘b’ at Fourth Position
  • Turing Machine (TM) for Insert ‘b’ at Last Position

Delete Symbol’s

  • Turing Machine(TM) for Delete First Symbol
  • Turing Machine(TM) for Delete Second Symbol
  • Turing Machine(TM) for Delete Second Last Symbol
  • Turing Machine(TM) for Delete Third Symbol (First Method)
  • Turing Machine(TM) for Delete Third Symbol (Second Method)
  • Turing Machine(TM) for Delete Third Last Symbol
  • Turing Machine(TM) for Delete Last Symbol

Leave a Comment