Context Free Grammar for {a^mb^mc^n | m , n ε N } | CFG for {a^mb^mc^n | m , n ε N }

 Context Free Grammar  for  {a^mb^mc^n   |  m , n    ε   N } | CFG for  {a^mb^mc^n   |  m , n    ε   N }

OR
To construct a context-free grammar (CFG) for the language L={ambmcnm,n0}L = { a^m b^m c^n mid m, n geq 0 }, where mm and nn are non-negative integers, we need a grammar that generates strings with equal numbers of aa‘s and bb‘s followed by any number of cc‘s.
Here’s a CFG for this language:
Start Symbol: SS
Non-terminal Symbols: SS
Terminal Symbols: a,b,ca, b, c

Production Rules:

  • SaSbS rightarrow aSb
  • SCS rightarrow C
  • CcCC rightarrow cC
  • CϵC rightarrow epsilon
Start Symbol: SS

Explanation

  • The production rule SaSbS rightarrow aSb ensures that for every aa added to the string, a corresponding bb is added. This maintains the equality of aa‘s and bb‘s in the string.
  • The production rule SCS rightarrow C transitions to handling the cc‘s after all aa‘s and bb‘s are placed.
  • The non-terminal CC generates zero or more cc‘s by the rules Cc
    C rightarrow cC
    and CϵC rightarrow epsilon. The rule CcCC rightarrow cC adds cc‘s, while CϵC rightarrow epsilon allows the string to end when there are no more cc‘s to add.

Leave a Comment